

	Data: 31/10/2016	
código de inscrição	Horário: 13:30 – 17:30	

Orientações gerais

- Somente identifique sua prova com o código de inscrição (não coloque seu nome);
- Assim que assinar a lista de presença verifique seu código de inscrição e preencha todos os campos referentes em todas as páginas;
- Não é permitida consulta bibliográfica;
- Realizar a prova com caneta azul ou preta;
- Será permitido o uso de calculadora científica simples;
- Não será permitido o uso de aparelhos eletrônicos e celulares;
- Esta página da prova pode ser destacada para consultar a tabela periódica;
- Não é permitida a consulta a outras tabelas periódicas;
- As questões devem ser respondidas no espaço destinado as mesmas, não sendo permitido o uso do verso da folha de prova.

	TABELA PERIÓDICA																
1	7				No. Atô	mico											18
1 H					Elemer	nto											2 He
1.0	2				Massa A							13	14	15	16	17	4.0
3	4							4				5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.9	9.0											10.5	12.0	14.0	16.0	19.0	20.2
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
23.0	24.3	3	4	5	6	7	8	9	10	11	12	27.0	28.1	31.0	32.1	35.5	39.9
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.6
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.5	87.6	88.9	91.2	92.9	95.9	97	101.1	102.9	106.4	107.9	112.4	114.6	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.6	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	209	210	222
87	88	89	104	105	106												
Fr	Ra	Ac	Unq	Unp	Unh												
223	226	227	261	262	263												

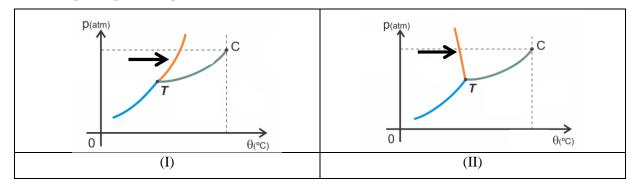
58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	(231)	238.0	(237)	(242)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259	(260)

1

	Data: 31/10/2016	
código de inscrição	Horário: 13:30 – 17:30	

Questão 1: Um composto hipotético do tipo AB se decompõe de acordo com a equação mostrada abaixo, sendo a variação na concentração de AB medida em função do tempo e o resultado é mostrado na Tabela 1. Indique se esses valores são compatíveis com uma cinética de primeira ordem, explicitando sua resposta e determine a constante de velocidade da reação.

 $AB_{(aq)} \rightarrow A_{(aq)} + B_{(aq)}$


-		
Tal	hel	la 1

Experimento	$[AB] / mol.L^{-1}$	Tempo / s
1	403,4	0,0
2	148,4	10,0
3	54,6	20,0
4	20,08	30,0
5	7,39	40,0
6	2,72	50,0

oédino do incorição	Data: 31/10/2016
código de inscrição	Horário: 13:30 – 17:30

Questão 2: A melhor forma de se representar as relações gerais entre as fases sólida, líquida e vapor é por meio de um diagrama de fases. Esse diagrama, "resume as condições para as quais uma substância existe no estado sólido, líquido ou gasoso."(Chang, 2013). No quadro seguinte estão dois diagramas de fases para compostos distintos. Por que a linha mostrada pela seta nas duas imagens (I e II) apresenta inclinações diferentes e opostas para as espécies.

código de inscrição	Data: 31/10/2016
	Horário: 13:30 – 17:30

Questão 3: Para a reação abaixo, a constante de equilíbrio é de 49,0 a uma determinada temperatura. Se 0,400 mol de cada uma das espécies A e B são colocadas em um recipiente de 2,00 litros nesta temperatura, quais são as concentrações de todas as espécies presentes no estado de equilíbrio?

$$A + B \rightleftharpoons C + D$$

oódigo do incorição	Data: 31/10/2016
código de inscrição	Horário: 13:30 – 17:30

Questão 4: Para se obter, de forma fácil, os gases monóxido de carbono, $CO_{(g)}$, e hidrogênio, $H_{2(g)}$, pode-se reagir metano, $CH_{4(g)}$, com a água, $H_2O_{(l)}$. Para uma determinada reação, tem-se 0,800 kg de $CH_{4(g)}$ e 2,81 kg de $H_2O_{(l)}$. Para esse processo, qual a massa de $H_{2(g)}$ produzida e qual quantidade, em gramas, de excesso de reagente que permanece ao final da reação?

	Data: 31/10/2016	
código de inscrição	Horário: 13:30 – 17:30	

Questão 5: Neopentano, isopentano e *n*-pentano são três isômeros constitucionais cujas fórmulas estruturais são mostradas abaixo. Nas mesmas condições, coloque os três compostos em ordem crescente da pressão de vapor. Justifique sua escolha.

	Data: 31/10/2016
código de inscrição	Horário: 13:30 - 17:30

Questão 6: Quanto tempo é necessário para depositar, por galvanização, 1,50 g de prata a partir de uma solução aquosa de nitrato de prata usando uma corrente de 13,4 mA. (Despreze outros fatores, tais como sobrepotencial e possíveis reações paralelas).

Dados:

 $1 \text{ Faraday} = 96500 \text{ coulombs.mol}^{-1}$

i=q/t, onde i é a corrente em amperes, q a carga em Coulomb e t o tempo em segundos

	Data: 31/10/2016
código de inscrição	Horário: 13:30 – 17:30

Questão 7: Usando a designação (E)-(Z) para alcenos, dê os nomes IUPAC para cada um dos seguintes compostos.

(a)
$$C = C$$
 H $C = C$ $CH_2CH_2CH_3$ (c) H_3C $C = C$ $CH_2CH(CH_3)_2$ CH_3

(b)
$$C = C$$
 CH_2CH_3 $C = C$ CH_3 $C = C$ CH_2CH_3

código de inscrição	Data: 31/10/2016	
	Horário: 13:30 – 17:30	

Questão 8: Preencha todo o diagrama de orbitais moleculares abaixo para a molécula de NO, indicando e nomeando os orbitais moleculares de fronteira, assim como calculando a ordem de ligação para a molécula, justifique ainda se a molécula é diamagnética ou paramagnética.

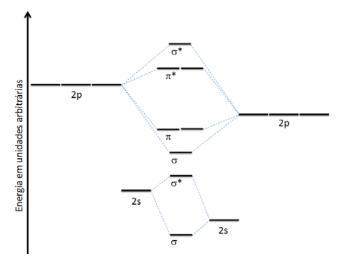


Diagrama de orbitais moleculares para a molécula de NO